C93800

Product Description: High-Leaded Tin Bronze

Solids: ½" to 10" 0.D.

Tubes: 1" to 16" 0.D.

Rectangles: Up to 20"

Standard Lengths: 144"

Shape/Form: semi-finished, mill stock or near-net shapes, anode, bar stock, billet/bloom, squares, hex, plate, profile or

structural shape, flats/rectangular bar

Typical Uses

Industrial bearings, railroad engine casings, pumps, industrial centrifuges, machine parts, low friction, moderate pressure

bushings, railroad applications, acid resisting applications, backs for lined journal bearings for passenger cars, general service bearings for moderate pressure, wearing material for rod bushings, wearing material for wedges, wearing material for shoes, pump impellers for acid mine water, pump bodies for acid mine water,

freight car bearings, backs for lined journal bearings for locomotives

Marine large bearings for ships

Similar or Equivalent Specification

CDA	ASTM	Asarcon	SAE	AMS	Federal	Military	Other
C93800	B505 B505M B66 B143-3D	715			QQ-C-390, E6 QQ-B-1005, COMP 19	MIL-B-11553, COMP 19	Anti-Acid Metal

Chemical Composition

Cu%	Pb%	Sn%	Zn%	Fe%	P % ¹	Ni%²	AI%	S%	Sb%	Si%
75.00- 79.00	13.00- 16.00	6.30- 7.50	0.80	0.15	0.05	1.00	0.005	0.08	0.80	0.005

Chemical Composition according to ASTM B505/B505M-18

¹For continuous castings, P shall be 1.5% max. ²Ni value includes Co. Note: Cu + Sum of Named Elements, 99.0% min. Single values represent maximums.

Machinability

Copper Alloy UNS No.	Machinability Rating	Density (lb/cu in at 68 °F)
C93800	80	0.334

Tensile Str	ength, min		rength, at .5% on Under Load, min	Elongation, in 2 in. or 50 mm min	Brinell Hardness	Remarks
ksi	MPa	ksi	MPa	%	typical BHN	
25	172	16	110	5	55 (500 kg)	

Mechanical Properties according to ASTM B505/B505M-18

Physical Properties

	US Customary	Metric
Melting Point – Liquidus	1730 °F	943 °C
Melting Point – Solidus	1570 °F	854 °C
Density	0.334 lb/in3 at 68 °F	9.25 gm/cm ³ at 20 °C
Specific Gravity	9.25	9.25
Electrical Conductivity	11% IACS at 68 °F	0.066 MegaSiemens/cm at 20 °C
Thermal Conductivity	30.2 Btu/sq ft/ft hr/°F at 68 °F	52.3 W/m at 20 °C
Coefficient of Thermal Expansion 68-392	10.3 · 10 ⁻⁶ per °F (68-392 °F)	17.8 · 10 ⁻⁶ per °C (20-200 °C)
Specific Heat Capacity	0.09 Btu/lb/°F at 68 °F	377.1 J/kg at 20 °C
Modulas of Elasticity in Tension	10500 ksi	72400 MPa
Incipient Melting	600 °F	316 °C
Magnetic Permeability	1	1

Physical Properties provided by CDA

Fabrication Properties

Joining Technique	Suitability
Soldering Brazing Oxyacetylene Welding Gas Shielded Arc Welding Coated Metal Arc Welding	Good Poor Not Recommended Not Recommended Not Recommended

Fabrication Properties provided by CDA

Thermal Properties

Treatment	Temp./Time - US	Temp./Time - SI
Stress Temperature Solution Minimum	500	260
Solution Maximum Solution Time	0.0	
Solution Medium	0.0	
Precipitation Value Precipitation Time		
Precipitation Medium Annealing Minimum		
Annealing Maximum		
Annealing Time Hot Treatment Minimum		
Hot Treatment Maximum		

Fabrication Properties provided by CDA

